Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(7): 1352-1366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921808

RESUMO

PURPOSE: Patients with aggressive thyroid cancer are frequently failed by the central therapy of ablative radioiodide (RAI) uptake, due to reduced plasma membrane (PM) localization of the sodium/iodide symporter (NIS). We aimed to understand how NIS is endocytosed away from the PM of human thyroid cancer cells, and whether this was druggable in vivo. EXPERIMENTAL DESIGN: Informed by analysis of endocytic gene expression in patients with aggressive thyroid cancer, we used mutagenesis, NanoBiT interaction assays, cell surface biotinylation assays, RAI uptake, and NanoBRET to understand the mechanisms of NIS endocytosis in transformed cell lines and patient-derived human primary thyroid cells. Systemic drug responses were monitored via 99mTc pertechnetate gamma counting and gene expression in BALB/c mice. RESULTS: We identified an acidic dipeptide within the NIS C-terminus that mediates binding to the σ2 subunit of the Adaptor Protein 2 (AP2) heterotetramer. We discovered that the FDA-approved drug chloroquine (CQ) modulates NIS accumulation at the PM in a functional manner that is AP2 dependent. In vivo, CQ treatment of BALB/c mice significantly enhanced thyroidal uptake of 99mTc pertechnetate in combination with the histone deacetylase (HDAC) inhibitor vorinostat/SAHA, accompanied by increased thyroidal NIS mRNA. Bioinformatic analyses validated the clinical relevance of AP2 genes with disease-free survival in RAI-treated DTC, enabling construction of an AP2 gene-related risk score classifier for predicting recurrence. CONCLUSIONS: NIS internalization is specifically druggable in vivo. Our data, therefore, provide new translatable potential for improving RAI therapy using FDA-approved drugs in patients with aggressive thyroid cancer. See related commentary by Lechner and Brent, p. 1220.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Camundongos , Animais , Humanos , Vorinostat/farmacologia , Pertecnetato Tc 99m de Sódio/metabolismo , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Simportadores/genética , Simportadores/metabolismo , Inibidores de Histona Desacetilases , Linhagem Celular Tumoral
2.
Chem Biol Drug Des ; 99(1): 103-110, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331335

RESUMO

In recent years, biological macromolecules have piqued the interest of researchers owing to their vast variety of biological uses. As a result, the marine sponge is a multicellular heterotrophic parazoan with chemicals for defence against predator assaults, biofouling and microbial diseases. These priceless molecules are known as secondary metabolites, and they are essential for survival in a highly competitive environment. So far, over 5,000 marine natural compounds have been extracted from marine sponges, making them an excellent option for drug formulation. One among them is, aaptamine, a marine alkaloid with a benzo[de][1,6]-napthyridine framework extensively distributed in marine sponges. Due to this reason, aaptamine has been intensively researched for various biological purposes, including cancer and protease inhibition, offering fresh insights into novel treatments. Keeping this in mind, we reviewed the biological significance of the marine sponge alkaloid aaptamine.


Assuntos
Alcaloides/química , Antineoplásicos/química , Naftiridinas/química , Poríferos/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/química , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Naftiridinas/isolamento & purificação , Naftiridinas/farmacologia , Poríferos/metabolismo
3.
RSC Adv ; 11(8): 4818-4828, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424411

RESUMO

In recent years, the development of a nano-conjugate system for drug delivery applications has gained attention among researchers. Keeping this in mind, in this study, we developed a doxorubicin-platinum conjugate system that targeted breast cancer cell lines. To achieve this, we developed platinum nanoparticles using polyvinylpyrrolidone (PVP). High resolution-transmission electron microscopy (HR-TEM) revealed the occurrence of octopod-shaped platinum nanoparticles. Subsequently, doxorubicin (DOX) was conjugated on the surface of the as-prepared platinum octopods via an in situ stirring method. The physicochemical characterization of the doxorubicin-platinum conjugate system revealed that the PVP of PtNPs interacts with the NH2 group of doxorubicin via electrostatic interaction/hydrogen bonding. Besides, the doxorubicin-platinum conjugate system exhibited a sustained drug release profile within the cancer cells. Furthermore, the evaluation of the in vitro anticancer efficacy of the doxorubicin-platinum conjugate system in breast cancer cells (MCF-7 and MDA-MB-231) unveiled the induction of apoptosis via intracellular ROS and DNA damage, rather than free DOX and PtNPs. Remarkably, we also perceived that the doxorubicin-platinum conjugate system was strong enough to down-regulate the PI3K/AKT signalling pathway. As a result, the tumour suppressor gene PTEN was activated, which led to the stimulation of a mitochondrion-based intrinsic apoptotic pathway and its downstream caspases, triggering cell death. Hence, our findings suggested that a biologically stable doxorubicin-platinum conjugate system could be an imperative therapeutic agent for anticancer therapy in the near future.

4.
Appl Organomet Chem ; 34(10): e5887, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836625

RESUMO

Approximately every 100 years, as witnessed in the last two centuries, we are facing an influenza pandemic, necessitating the need to combat a novel virus strain. As a result of the new coronavirus (severe acute respiratory syndrome coronavirus type 2 [SARS-CoV-2] outbreak in January 2020, many clinical studies are being carried out with the aim of combating or eradicating the disease altogether. However, so far, developing coronavirus disease 2019 (COVID-19) detection kits or vaccines has remained elusive. In this regard, the development of antiviral nanomaterials by surface engineering with enhanced specificity might prove valuable to combat this novel virus. Quantum dots (QDs) are multifaceted agents with the ability to fight against/inhibit the activity of COVID-19 virus. This article exclusively discusses the potential role of QDs as biosensors and antiviral agents for attenuation of viral infection.

5.
FEBS J ; 287(9): 1742-1757, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31692262

RESUMO

Here, we describe a novel peroxin, Pex37, in the yeast Hansenula polymorpha. H. polymorpha Pex37 is a peroxisomal membrane protein, which belongs to a protein family that includes, among others, the Neurospora crassa Woronin body protein Wsc, the human peroxisomal membrane protein PXMP2, the Saccharomyces cerevisiae mitochondrial inner membrane protein Sym1, and its mammalian homologue MPV17. We show that deletion of H. polymorpha PEX37 does not appear to have a significant effect on peroxisome biogenesis or proliferation in cells grown at peroxisome-inducing growth conditions (methanol). However, the absence of Pex37 results in a reduction in peroxisome numbers and a defect in peroxisome segregation in cells grown at peroxisome-repressing conditions (glucose). Conversely, overproduction of Pex37 in glucose-grown cells results in an increase in peroxisome numbers in conjunction with a decrease in their size. The increase in numbers in PEX37-overexpressing cells depends on the dynamin-related protein Dnm1. Together our data suggest that Pex37 is involved in peroxisome fission in glucose-grown cells. Introduction of human PXMP2 in H. polymorpha pex37 cells partially restored the peroxisomal phenotype, indicating that PXMP2 represents a functional homologue of Pex37. H.polymorpha pex37 cells did not show aberrant growth on any of the tested carbon and nitrogen sources that are metabolized by peroxisomal enzymes, suggesting that Pex37 may not fulfill an essential function in transport of these substrates or compounds required for their metabolism across the peroxisomal membrane.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Organelas/metabolismo , Peroxissomos/metabolismo , Saccharomycetales/química , Proteínas Fúngicas/química , Proteínas de Membrana/química , Organelas/química , Peroxissomos/química , Saccharomycetales/citologia , Saccharomycetales/metabolismo
6.
J Biol Chem ; 294(42): 15418-15434, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31467083

RESUMO

The primary cilium is a cellular sensor that detects light, chemicals, and movement and is important for morphogen and growth factor signaling. The small GTPase Rab11-Rab8 cascade is required for ciliogenesis. Rab11 traffics the guanine nucleotide exchange factor (GEF) Rabin8 to the centrosome to activate Rab8, needed for ciliary growth. Rabin8 also requires the transport particle protein complex (TRAPPC) proteins for centrosome recruitment during ciliogenesis. Here, using an MS-based approach for identifying Rabin8-interacting proteins, we identified C7orf43 (also known as microtubule-associated protein 11 (MAP11)) as being required for ciliation both in human cells and zebrafish embryos. We find that C7orf43 directly binds to Rabin8 and that C7orf43 knockdown diminishes Rabin8 preciliary centrosome accumulation. Interestingly, we found that C7orf43 co-sediments with TRAPPII complex subunits and directly interacts with TRAPPC proteins. Our findings establish that C7orf43 is a TRAPPII-specific complex component, referred to here as TRAPPC14. Additionally, we show that TRAPPC14 is dispensable for TRAPPII complex integrity but mediates Rabin8 association with the TRAPPII complex. Finally, we demonstrate that TRAPPC14 interacts with the distal appendage proteins Fas-binding factor 1 (FBF1) and centrosomal protein 83 (CEP83), which we show here are required for GFP-Rabin8 centrosomal accumulation, supporting a role for the TRAPPII complex in tethering preciliary vesicles to the mother centriole during ciliogenesis. In summary, our findings have revealed an uncharacterized TRAPPII-specific component, C7orf43/TRAPPC14, that regulates preciliary trafficking of Rabin8 and ciliogenesis and support previous findings that the TRAPPII complex functions as a membrane tether.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Vesículas Citoplasmáticas/metabolismo , Quinases do Centro Germinativo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Centríolos/genética , Cílios/genética , Vesículas Citoplasmáticas/genética , Quinases do Centro Germinativo/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Morfogênese , Ligação Proteica , Peixe-Zebra
7.
J Cell Biol ; 204(5): 659-68, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24590171

RESUMO

We demonstrate that the peroxin Pex3 is not required for the formation of peroxisomal membrane structures in yeast pex3 mutant cells. Notably, pex3 mutant cells already contain reticular and vesicular structures that harbor key proteins of the peroxisomal receptor docking complex-Pex13 and Pex14-as well as the matrix proteins Pex8 and alcohol oxidase. Other peroxisomal membrane proteins in these cells are unstable and transiently localized to the cytosol (Pex10, Pmp47) or endoplasmic reticulum (Pex11). These reticular and vesicular structures are more abundant in cells of a pex3 atg1 double deletion strain, as the absence of Pex3 may render them susceptible to autophagic degradation, which is blocked in this double mutant. Contrary to earlier suggestions, peroxisomes are not formed de novo from the endoplasmic reticulum when the PEX3 gene is reintroduced in pex3 cells. Instead, we find that reintroduced Pex3 sorts to the preperoxisomal structures in pex3 cells, after which these structures mature into normal peroxisomes.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas de Membrana/fisiologia , Peroxissomos/metabolismo , Pichia/ultraestrutura , Autofagia , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Deleção de Genes , Proteínas de Fluorescência Verde/análise , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Eletrônica de Transmissão , Peroxissomos/ultraestrutura , Pichia/genética , Pichia/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Autophagy ; 9(7): 1044-56, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23614977

RESUMO

We demonstrated that in the yeast Hansenula polymorpha peroxisome fission and degradation are coupled processes that are important to remove intra-organellar protein aggregates. Protein aggregates were formed in peroxisomes upon synthesis of a mutant catalase variant. We showed that the introduction of these aggregates in the peroxisomal lumen had physiological disadvantages as it affected growth and caused enhanced levels of reactive oxygen species. Formation of the protein aggregates was followed by asymmetric peroxisome fission to separate the aggregate from the mother organelle. Subsequently, these small, protein aggregate-containing organelles were degraded by autophagy. In line with this observation we showed that the degradation of the protein aggregates was strongly reduced in dnm1 and pex11 cells in which peroxisome fission is reduced. Moreover, this process was dependent on Atg1 and Atg11.


Assuntos
Autofagia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Peroxissomos/metabolismo , Pichia/citologia , Pichia/metabolismo , Proteólise , Catalase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutação , Estresse Oxidativo , Peroxissomos/ultraestrutura , Pichia/crescimento & desenvolvimento , Pichia/ultraestrutura , Estrutura Quaternária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
9.
Front Oncol ; 2: 50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662318

RESUMO

Peroxisomes are ubiquitous eukaryotic organelles, which perform a plethora of functions including hydrogen peroxide metabolism and ß-oxidation of fatty acids. Reactive oxygen species produced by peroxisomes are a major contributing factor to cellular oxidative stress, which is supposed to significantly accelerate aging and cell death according to the free radical theory of aging. However, relative to mitochondria, the role of the other oxidative organelles, the peroxisomes, in these degenerative pathways has not been extensively investigated. In this contribution we discuss our current knowledge on the role of peroxisomes in aging and cell death, with focus on studies performed in yeast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...